INDIAN MARITIME UNIVERSITY
(A Central University, Government of India)
June 2017 End Semester Examinations
B. Tech (Marine Engineering - First Semester)

Mathematics - I - UG11T 2102/UG11T 1102
(AY 2009-2014 onwards)
Date: 29.06.2017 Maximum Marks : 100
Time: 3 Hrs
Pass Marks : 50

Note: i. Use of approved type of scientific calculator is permitted. ii. The symbols have their usual meanings.

Part-A

(10×3=30 Marks)
(All Questions are Compulsory)
Q. 1 (a) Prove that the shortest distance between two points in a plane is a straight line.
(b) Find radius of curvature at $(1,-1)$ of the curve $y=x^{2}-3 x+1$.
(c) Find the saddle points of the function $x^{3}+3 x y+y^{3}$.
(d) Find the $\mathrm{n}^{\text {th }}$ derivative of $\frac{x}{(x+9)(2 x+5)}$.
(e) Show that $\bar{F}=y z \hat{i}+x z \hat{j}+x y \hat{k}$ is the solenoidal and irrotational vector field.
(f) Find the length of the arc of the parabola $y^{2}=4 a x$ measured from the vertex $(0,0)$ to one extremity of latus rectum $(a, 2 a)$.
(g) Prove that $\left[\begin{array}{ccc}\bar{a} & \bar{b}+\bar{c} & \bar{a}+\bar{b}+\bar{c}\end{array}\right]=0$
(h) Determine the poles of the function $f(z)=\frac{z^{2}}{(z+1)^{2}(z-2)}$ and the residue at each pole.
(i) Prove that $\sqrt{n+1}=n \sqrt{n}$
(j) Evaluate $\int_{0}^{1} \int_{0}^{y} x y e^{-x^{2}} d x d y$

Part-B

(Answer any 5 of the following)
Q. 2 (a) If $y_{n}=\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$, show that $\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$
(b) Find the asymptotes to the curve $x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0$.

$$
(7+7=14 \text { Marks })
$$

Q. 3 (a) If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} \mathrm{u}=\frac{-9}{(x+y+z)^{2}}$
(b) If $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$ and $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{-\sin u \cos 2 u}{4 \cos ^{3} u}$

$$
(7+7=14 \text { Marks })
$$

Q. 4 (a) Investigate for what values of K and W the simultaneous equations $x+y+z=6 ; x+2 y+3 z=10 ; x+2 y+k z=W$ have (i) no solution,
(ii) a unique solution,
(iii) an infinite number of solutions.
(b) Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ll}9 & -8 \\ 5 & -4\end{array}\right]$

$$
(8+6=14 \text { Marks })
$$

Q. 5 a) Find the length of arc of the curve $x=a e^{t}$ Sint, $y=a e^{t}$ Cost from $\mathrm{t}=0$ to $\mathrm{t}=1$.
b) Apply the rule of differentiation under integral sign to prove

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\log \left(1+a \sin ^{2} x\right)}{\sin ^{2} x} d x=\pi(\sqrt{1+a}-1) \tag{7+7=14Marks}
\end{equation*}
$$

Q. 6 a) Find the volume of the solid generated by the revolving region bounded by $y=x^{3}, y=0$ and $x=2$ about the x-axis.
b) Evaluate $\iiint_{V} d x d y d z$ where V is the volume bounded by cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4, z=0$.

$$
(8+6=14 \text { Marks })
$$

Q. 7 a) Find the directional derivative of $\phi=x y^{2}+y z^{2}$ at $(1,-1,1)$ along the vector $\hat{i}+2 \hat{j}+\hat{k}$.
b) If the vector field $\bar{F}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$ is irrotational, find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ to determine the scalar function ϕ such that $\bar{F}=\nabla \phi$.

$$
\text { (} 7+7=14 \text { Marks })
$$

Q. 8 a) Evaluate $\int_{C} \frac{z+3}{(z-1)^{2}(z+2)} d z$ where C is the circle $|z|=3$
b) Let $f(z)=u+\hat{i} v$ be an analytic function and if $u=-3 x+2 x y$, then find v and express $f(z)$ in terms of z. ($7+7=14$ Marks)

